Форум |  USEIC.RU | Помощь |
|
| ||
Find a monic polynomial p(x)=x^n+...of degree n with the least integral ∫p^2(x)dx on [-1;1]and find he minimal value of that integral the same for ∫p^2(x)exp{-x^2}dx on (-∞;∞ ) let Kr:[-π:π]->R+ be non negative continuous function such that Kr(-π)=Kr(π) 1/(2π) ∫Kr(s)ds=1( integral on [-π:π]) and for any l>0 limKr(x)=0 when r->∞ uniformly for |x|≥l.let f be a 2 π-periodic continuous function.Show that f*Kr->f for r->∞ uniformaly with respect to x in [-π:π] |
|